Prototyping a transdisciplinary bioengineering curriculum development project

Lionel Lam, Thomas Cochrane, Catherine Davey, Sam John, Shaktivesh Shaktivesh, Sampras Ganesan, Vijay Rajagopal
Department of Biomedical Engineering, University of Melbourne

Abstract

- Biomedical engineering is transdisciplinary
- Students must be able to integrate concepts across domains to tackle biomedical problems
- Traditional curricula do not reflect this: students tend to over-compartmentalise concepts & engage in surface learning
- Applied design-based research framework to redevelop curriculum around collaborative student-led design of a bionic limb
- Implementation in 2 subjects to date has garnered positive student feedback

Methods

- **Framework:** Design Based Research (DBR)
 - Continuous iterations of design, deployment, reflection, and redesign
- **Approach:** Re-develop curriculum around a bionic limb design project
 - Inspired by work done in a previous subject exploring the integrated learning of mechanics & programming concepts

Progress

- Formed curriculum design team aligned with core subjects & bionic limb sub-systems

<table>
<thead>
<tr>
<th>Subject</th>
<th>Focus Area</th>
<th>Relevant bionic limb sub-systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN2003</td>
<td>Applied Computation in Bioengineering</td>
<td>User-bionic limb interfacing, programming & simulation</td>
</tr>
<tr>
<td>BMEN30006 Circuits and Systems</td>
<td>Actuation & control of limb motion</td>
<td>Electronics & circuitry</td>
</tr>
<tr>
<td>BMEN30010 Mechanics for Bioengineering</td>
<td>Material design & fabrication, mechanics of limb motion</td>
<td>Physical structure of bionic limb</td>
</tr>
<tr>
<td>BMEN30008 Biosystems Design</td>
<td>Engineering design & analysis principles</td>
<td>Feasibility studies, safety & risk analyses, assembly</td>
</tr>
</tbody>
</table>

- **Staging of information is important**
 - Students encounter BMEN2003 first, then BMEN30006 & BMEN30010 concurrently, and finally BMEN30008
 - Subject assessments designed to account for this & to foreshadow connections to future concepts
- **Prototyping of bionic limb by tech designers**
 - Revealed challenges likely to be faced by students
 - Inform design of accompanying scaffolded learning activities

Conclusion

- Positive preliminary student feedback
 - “It is a fantastic concept and I love the idea that unit coordinators are working together as a specialisation rather than isolated units. I think it’s great our coordinators are working together to integrate content. Overall, I think the collaboration is fantastic and something that we should do throughout our degree to bring skills together.”

- **Reflections**
 - COVID-19 restrictions adversely affected student interactions & collaborations
 - Difficult to alter students’ approaches to learning due to length of semester (12 weeks) – likely to observe changes in longer term
 - Formal evaluations (surveys & focus groups) planned for upcoming semesters
 - Ecology of resources to be expanded (ePortfolios)

Background

- **Biomedical engineering is transdisciplinary**
 - “Integration of multiple disciplines in a way that transcends their traditional boundaries” (Khoo, Haapakoski, Helistén, & Malone, 2019)

- Previous curriculum did not reflect this (little to no cross-subject references/connections)
 - Students tend to over-compartmentalise concepts
 - Students tend to engage in surface learning
- **Aims/Objectives:**
 - Help students make connections between concepts & across subjects
 - Promote deep learning through hands-on collaborative design work
 - Enhance the overall learning experience

- **Framework**
 - Design Based Research (DBR)
 - Continuous iterations of design, deployment, reflection, and redesign

- **Approach**
 - Re-develop curriculum around a bionic limb design project
 - Inspired by work done in a previous subject exploring the integrated learning of mechanics & programming concepts

- **Staging of information is important**
 - Students encounter BMEN2003 first, then BMEN30006 & BMEN30010 concurrently, and finally BMEN30008
 - Subject assessments designed to account for this & to foreshadow connections to future concepts

- **Prototyping of bionic limb by tech designers**
 - Revealed challenges likely to be faced by students
 - Inform design of accompanying scaffolded learning activities

- **Bionic limb-related learning activities launched in 2 subjects to date**
 - BMEN2003
 - Biomech simulation (Figure 3) adapted for delivery
 - Subject altered to incorporate concepts drawn from a diversity of bioengineering-related fields (e.g. electromagnetism, systems biology)
 - BMEN30010
 - Activities modified to promote recall of knowledge covered in BMEN2003
 - Established project-based task assignments requiring synthesis of mechanics & computation (along with scaffolded accompanying tasks)

References